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On the Inclination of Satellite Orbits About an

Oblate Precessing Planet

Introduction

It is shown that satellite orbits about an oblate

precessing planet will maintain a constant inclination to

the planet's equator under a certain condition. This condi-

tion is that the motions of the satellite's pericenter and

of its ascending node on the equator plane are rapid when

compared to the precession of the planet. This is the case

for both satellites of Mars and explains why it is not just

a coincidence that both of these satellites have small (42*)

inclinations to the equator of Mars at the present time.

1. It is well-known that in the absence of satellites,

an oblate spinning planet whose equator is inclined to its

orbit plane will precess about the normal to its orbit plane1
with period given by T=2 (e)a C sec (1-1). P is the3 P (C-A)
period of rotation of the planet and P' is its periol of

revolution about the sun. C and A are the planet's moments

of inertia about an axis perpendicular to the equator plane

and an axis in the equator plane respectively. For simpli-

city we assume axial symmetry for the planet. % is the angle

--1--
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between the planet's orbit and equator planes, also known as

the obliquity. For Mars formula (1-1) gives us T-2.17x105

years where ;-A is taken from satellite data. 2

C
If 0 is the angle between the planet's equatorial and

orbit planes then the inclination, relative to the equator, of

a satellite orbit which is fixed in space will vary as the

planet precesses. If 6 is the angle between the satellite

and planet orbit planes then the inclination would vary by 2$

fo;d6a and by 26 ford:Sof. For Mars $.25* 12'. However,

Phobos and Deimos are inclined to Mars' equator by less than

two degrees. Similar results hold for the inner satellites of

Jupiter, Saturn, Uranus, mnd Neptune. Since these planets are

all precessing it is evident that they must drag the orbit

planes of their satellites around with them. Otherwise the

low inclinations of these satellites would amount to an un-

believable coincidence. Two possibilities suggest themselves

since the equator of a planet is defined both by the spin axis

of the planet and by the equatorial bulge that this spin

produces. In the first place, the spin can affect the incli-

nation through tides raised on the planet by the satellite.

These tides transfer spin angular momentum into orbital

angular momentum of the satellite or vice versa depending on

whether the orbital period or the spin period is longer.

However, upper bounds can be put on these tidal effects and

they definitely rule out this possibility as an explanation of
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the inclinations of the satellites. The second possibility is

directly related to the equatorial bulge of the planet. it is

well known that the major effect of the oblateneus of a planet

* on its satellites' orbits is to produce a secular motion of

the pericenters and of the nodeu. In this paper it is shown

that if these motions are sufficiently rapid then the inclina-

tion of the satellite's orbit relative to the planet's equator

is unchanged by the planet's precession. It is then apparent

that in this case if satellites are brought into their planet*'

equator planes (either by being formed there or by some other

means) then their inclinations to this plane will remain constant

as the planet precesses.

2. The notation which is followed in this paper is set

out below.

jn is the longitude of the ascending node.

i is the orbital inclination relative to the planet's

equator.

W is the longitude of the pericenter.

a is the semi-major axis.

e is the eccentricity.

f is the true anomaly.

M is the mean anomaly. M=n(t-te)

n is the mean motion. n=2flwhere
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T is the period of the satellite.

ris the mean motion of the planet about the sun.

Tis the planet's period about the sun.

a is the spin angular velocity of the planet.

R is the radius of the planet.

M is the mass of the planet.

Explanation of Fig.(l-2).

The two coordinate systems which will be used are drawn

in Fig.(l-2). 0 is their common origin.

The X, Y, Z system is an inertial system with the X Y

plane coinciding with the planet's orbital plane. ±, 3,
are the usual unit vectors.

The x, y, z set is one in which the x y plane is the

planet's equatorial plane. The x axis lies in the X Y plane

and makes an angle of K with the X axis. Hence,= &is the

angular velocity of precession and 0 is the planet's obliquity.

i, 3, k are the unit coordinate vectors of this system.

PI=p4=P~sinO j+cosO k).
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Let r be the radius vector to the satellite from 0.
r= |I •= rua (l-e') (1-2).

r l+ecosf

Let ý be a unit vector in the orbit plane orthogonal to }

and in the direction of increasing f.

Finally, let *=fx#.

We will need the matrix which relates •, •, • to i, , k

This is just the Euler matrix and can be written as followst

"A

where the matrix A is given below

cosucosA -sinusinirtcosi, cosusinA+sinucosncosi, sinusinil

-sinucosA -cosusinr,. cosi, -sinusinA+cosucosncosi, cosusini

sinisinn ' -sinicosra , cosi J
We have set u--w+f in the above. (1-3).

3. The equation for di is given in terms of the perturba-
dý 3

tion force per unit mass F as follows:

di= .I .~(L)cos(w+f) L*](-)

In the x, y, z frame I is made up of two parts. The first

is due to the planet's oblateness and the second is the inertial

force due to the planet's precession. The oblateness has

been treated by many authors including Kozai 4 whose work we
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shall refer to for results at a later stage. In the present

paper a development of the inertial force will be carried out.

Let P, denote the inertial force and •o the force due to

the oblateness.

Hence, Poz

10 has the familiar form

?~ ~ 5

The dot denotes differentiation with respect to time in the

precessing x, y, z coordinate system. ; is the precession

angular velocity and is expressed in terms of the i, i, k

unit vectors asA=P(sin$ j+cosO k). Finally, since we are

considering uniform precession, we can set 4=O and we get

The next step is to express rcos(w+f)L[jI-4] in terms of

trigonometric functions of the true anomaly f. We shall treat

the "centrifugal force" -4.a('K( ) first.

but (?.*)=0. Hence, we have rcos(w+f)[A'(•Z•)-.O]=rcos(w+f)

(4.•)(2.•). Using the transformation matrix (1-3) we can

express r and 4 in terms of ", S, ko

A simple algebraic computation then yields:
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7-4

*uingf [2c0.2 fCog'W +2ain 2 fuin2W -sin2fsin2w) uin2rkuin]

-cu2 Esin2fcos2w~cou2fuin2w) u~nin2i]

-hiri2O 2cos7-fcosoj +2sii 2 fain2w-uiri2fsin2w) hinricosi

(sin2fcos2w+cou2fsin2w)cosrncos2i

(1-5)

Next we shall treat the "Coriolis force"

2rcosa(w +f)[Q14x). 2rco a(w +f)[A - (K 0)]

2rcos(w+f) a(''rOx--ro~~)-rf-rsni)

Where I have made use of

r=a (- t )ertsinfl 16
1+ecosf (1-6)rT

Usingjt=,4(sinq^+cosqfk) we get after an elementary computaLion

2rcos (w4.f)[(t)4

snfr'~fr (2coslco +2hinzfsin*tw-sin2fsin2w~s 1eof
a~l-z) [(sinfcoswtc)sino2 )(1+ecsf

(sin2fcos2w+cos2fcos2w) sinr e In
[(sin2fsin2w-cos2fcosz(, -sin2 fsin2 w) cosiicosi)

ao~ Q- [j(sin2fcos2w+cos2fcos2w)sini)(1+ ecosf)

a U-z (sin2fsin2w-2cos 2 fcos2 W-2sin 2 fsin2 W)sini) esinfJ

4. At this stage we will take the time average of di due

-P 3dt
to F over a single orbit of the satellite. In order to carry
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out this average we shall need a formula relating f to M.

This formula follows directly from the equations of motion.
i) 12-rZ -- IM, 1i) 1_ !_(r26)-0

r r dt

ii) implies rZdQ=h=constant. Since f differs from e by a

constant angle, dfuh . Using formula (1-6) we have

er 2 sinff=ehsinf 
= f

a(l-el) aT)-eZ)

r=ehcosff=eht cosf
a(l-e1) a(l-e2 )r2

r•a =hz

hence i) gives hl -eh 2 cosf =G MP
F3 a(l-e2 )r 2 r--=

h =G Mpa(l-et) is the result we are after.

df=df dt=l df-h = W.a
M -t 3 d n dnrt n r

df...a2= T using G Mp=n 2 a3 . (1-8).
dM rZ

We shall denote time averages by a bar over the averaged

quantity.

Tr
Thus F, 1 JdM. (1-9).

In performing the averages we can change the integration
217

variable to f thus obtaining F= 1 ((rL)2 Fdf (1-10).

0

Using this formula for computing averages and noting that r

is a symmetric function of f about f=IT, we can immediately

observe that all terms involving an odd power of sinf will
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give zero upon averaging. This is the only property of these

averages that we shall need aside from the obvious fact that

they are functions of a and e only. Dropping the terms which

average to zero we can writes

~=..............F-? in2$f ( 2r- s-i-nfhin2 w +2rTc-o-szcohlw) sin2n~sini
dt naNIl ezJ1~ L4

+(-r~cousfuin2wcoszwoujn2i)} +M2couZ${rrc-os2fhin2whi~n2ij

ds in2%(2rF -o-s"-co s2tw+ 2 rai n~f-s in2 w ) s i rcosai

+(rT-cos2fsin2Wco.1Acos2i)

Ain$3 f2rlfcosz-f(l+eco-sf~coulwsinn.L
a (1--e 211

2r~fsin'zf(l+ecosf)sin2whirxL+-r-f-ous2-fTl+-e-cou-f )cos2w

erfTain~fai n2wcosrcosi +Aucse~ {er3 fsin2fsinfsin2,wsini

r-3fcos2f (l+ecosf cos2cuuini)]
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5. At this stage we must refer to the results of the

paper by Kozai. To a first approximation the potential due

to an oblate planet can be expressed as

V=G_.+_ (gA÷-p(-sin 2A) where A is the angle of lati-
r r 3

tude measured from the equator. For an axially symmetric

(about a polar axis) planet A2 =3(C_-A) 6 (1-12)
2 Mp

where C is the moment of inertia about the polar axis and A

is the moment of inertia about an equatorial axis. In this

approximation the disturbing potential

R=GMA_(l-sin 2A). In Kozai's paper it is shown that

of the six orbital elements a, e, i,W ,.a, M only the last

three undergo secular (non-periodic) perturbations. Further-

more, the secular perturbation of M is a trivial one and can

be considered as defining a new or Orenormalized" mean motion.

The secular perturbations in W andrl can be expressed in

terms of n and A? as follows:

W ="(+ 2nAy r-5sinzi1 t
a2 (1-e2)2 ~ (1-13).

/I =j6-A~nco sit
a2 (1-eTt

6. The last step in the proof involves averaging the

expression for di over a period of time which is long compared
dreto the periods of revolution of the pericenter and nods. It
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is here that the assumption of a slow precession with respect

to these periods is employed. This assumption allows us to

treat a, a and i as constants in this average and only con-

sider the motions of w andAl since the oblateness only produces

secular variations of these latter two elements as mentioned

in section 5.

If we examine the equation for 31 under the conditions
dt

above, namely, that W andA are linear functions of the time

and a, e and i are constants, we see that all terms on the

right-hand side have zero time average providing that we

average over a sufficiently long period of time.

For the most interesting case of small inclination we

have j=- and it is seen by inspection that upon averaging
dt t~

over a time equal to T=-=21Ta 2 (l-e 2)2 gives usT nAa
f dt=O (1-14). In special cases such as sin2iV4 we
c a

have dW-O and in this case terms which are independent of j

must be averaged over much longer periods of time before they

give zero. Other pathological cases occur when 02L_-_and in
dt dt

similar circumstances. These cases give rise to products of

trigonometric functions whose arguments change with time at

approximately the same rates and this also increases the time

interval over which these terms average to zero-.---
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7. The condition under which the inclination is es-

sentially constant, except for small periodic terms, is

expressed in a more illuminating form in this paragraph.

From formula (1-1) we have
-2n=3,_2 J-Acos¢ Alsoh--&= Agn

29 C dt az(l-e2 )z

when sini<<l. Using A2 =3 (C-A) we get
2 Mp

= nscsece =3 /no% seci R (1-15).

M n 2Mpa2(I-e 2 )Z '-65J (TI-ei) a

Now the condition for constant inclination becomes

,ul or 3 ns sec
41 (l -e2)2 a)

For Mars we have A-=lo25%i06 for Phobos while =5.Oxl04

for Deimos.

We see from the magnitudes of , for Phobos and Deimos

that these satellites should undergo no change in inclina-

tion due to the precession of Mars. At present the orbit

of Phobos is inclined-by l.80and that of Deimos by 1.40 to

the equator plane of Mars. Since the obliquity of Mars is

250 12' it would be a remarkable coincidence if the inclina-

tions of these satellites varied by about 500 (see section 1)

and just at that time we came to observe them they both were

inclined by less than 20 to Mars' equator. In light of the

previous discussion we can see that this is not a coincidence

at all since the inclinations of these satellites do not vary

as Mars precesses.
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8. In this section a more refined calculation on orbits

of very low eccentricity e<l and small inclination sini4,l

is carried out. The amplitudes of the periodic terms in

the inclination are evaluated. From formula (1-11) we have,

setting e-o, and working to first order in sini

,t g(-sin afsin~ftsini+sin2OsinA1)+ sing~sinii

Since A&<<l for all satellites and planets in the solar sys-
n

tem we can approximate M=/singsinA (1-16). Using equation
dt

(1-13) we get

n-ni-A.n--nl-3(C-A)n-n1-9C_-A) R2 nal TM~aT i 0 C =

Integrating E=psin~sin yields r=-- singcosMne 0 where

r. is the constant part of T. Finally, substituting fork

andA•we get r=r3n/21a•2cos'j]coSn+÷• (1-17).L 5sn' •1 osJ ca 11)
For the satellites of Mars r=3.45910- 6cosoA+ro for

Phobos and T=1.38Alo- 5 cosrL+r* for Deimos or r=.71" cosf+÷0o

for Phobos and r=2.84"1 cosn+.• for Deimos.

9. Similar results hold for Jupiter, Saturn, Uranus and

Neptune. In all cases the major satellites of these planets

are close enough to their planets to maintain fixed inclina-

tions with respect to the equator of the planet.

Some of the outer satellites of the major planets, as

well as the Moon, have inclinations which remain constant
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with respect to their planet's orbit planes. In all these

cases, except that of the Moon, the planets could maintain

constant inclinations of the satellites with respect to

their equators if no forces other than those of the planet

acted on these satellites. However, the sun produces signi-

ficant perturbations of the elements of these outer satel-

lites. In particular, if we can neglect the oblateness of

a planet then the sun produces a motion of the node of a

satellite. This motion is uniform on the planet's orbit

plane. This is the major motion of the node for some outer

satellites and makes inclinations constant with respect to

the planetary orbit planes even though the planets are

oblate and precessing.

It should be pointed out that the calculations for

these major planet-satellite systems are not quite as ele-

mentary as those for Mars. This is for two reasons. In

the first place, mutual interactions between the satellites

produce additional motions of their nodes and pericenters

which may be comparable to those produced by the planets'

oblateness. Secondly, the torque on the planet-satellite

system due to the sun may include significant contributions

from couples acting on the satellites in addition to the

torque acting on the planet itself. For this reason the

formula (1-1) is not always applicable.
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Finally, in the Earth-Moon case it is well-known that

the Moon produces a greater torque on the Earth than the

sun does so (1-1) does not apply here without modification

either.



On the Eccentricity of Satellite Orbits in the

Solar System

Introduction

In this paper the secular changes in the eccentricities

of satellite orbits in the solar system are investigated.

Two mechanisms which affect the eccentricities are considered.

One of them is the tide raised on the planet by the satellite,

which has been the subject of discussion in the past; the

other is the tide raised on the satellite by the planet. It

is seen that cases arise in the solar system in which each

of these tide's effect on eccentricity is dominant.

1. DarwinI (1909), Groves 2 (1960) and Jeffreys 3 (1961)

have given arguments to show that in most cases the tide

raised by a satellite on a plarnt tends to increase the

eccentricity of the satellite's orbit. If we look at the

values of the eccentricities which arise in the orbits of

the inner satellites of planets, we see that they range

down as low as 10-4 for Tethys. Since it seems hard to

imagine any process of formation of satellites which could

produce initial values of eccentricity as low or lower than

these, it would appear necessary to look for some mechanism

that could produce a secular decrease of eccentricity which

-17-
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could rival in magnitude the secular change due to the tides

raised on the planets. Such a mechanism was proposed by

Urey4 (1958) in the form of tidal working in the satellite

due to tides raised by the planet. If we only consider the

case where the satellite always presents the same face to

the planet (this is the only case which is observed in the

solar system and includes the greater satellites of Jupiter

and Saturn as well as the Moon. Jeffreys 5 1952) then it is

easy to see why the tide raised on a satellite tends to

decrease its eccentricity. The eccentricity e=- ÷2 E LT (2-1)

where E is the energy of the orbit, L is the angular momentum

and MP and MS are the planet and satellite masses. If the

satellite is not spinning, then the tide raised on it can

only produce a radial perturbation force. This means that

L is not changed by the tide. Since any energy dissipation

in the satellite decreases E and since we have E<O, O<e1l

and L constant, we find that e is decreasing also. If epO

such dissipation must take place since the height of the tide

will vary with the oscillation in distance between the satel-

lite and planet.

In this paper it will be shown that insofar as their

effects on eccentricity are concerned, the tides on the

satellites are probably more important than tides on the

planets in all cases where tidal effects might be significant

except for Phobos, Deimos and possibly the Moon and Jupiter
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V. In the cases of Phobos, Deimos and Jupiter V, however,

the tides raised in their planets tend to secularly decrease

their eccentricities anyway so it is not surprising to find

that the orbits of these satellites have low values of eccen-

tricity.

2. In this section the following idealized case of a

planet with a single satellite will be considered. The

assumptions are as follows:

i) The mass of the satellite is neglected in comparison with

that of the planet.

ii) The inclination of the satellite's orbit plane to the

planet's equator is taken as zero.

iii) The planet and satellite are both considered to be

homogeneous incompressible spheres which can be characterized

by two parameters,p•and Q /b is the rigidity and Q the

specific dissipation function, Q= 2n dt (2-2)

where E* is the peak energy stored in the system during a

cycle andfdE dt is the energy dissipated over a complete

cycle. 0 will in general vary with the frequency and ampli-

tude of the tide and the size of the sphere in addition to

its composition.

iv) Finally, I will work only to first order in eccentricity

in the interest of simplicity.
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The idealized problem that I have set up has been solved

neglecting tides raised on the satellite by Darwin6 (1908)

and reviewed by Jeffreys 7 (1961). The following will be a

summary of Jeffreys' paper with several corrections of mis-

prints. Jeffreys' notation will not be followed7 instead we

shall use the following:

a-semi-major axis of the satellite's orbit.

e=eccentricity of the satellite's orbit.

G=gravitational constant.

nusatellite's mean motion=2f where

Tisatellite's period.

Quantities pertaining to the planet will have a

subscript p and those pertaining to the satellite

will have a subscript s.

M=mass of sphere.

R=radius of sphere.

1 Odensity of sphere.

gnsurface gravity of sphere.

/ALrigidity of sphere.

Q(v)=Q as a function of frequency V.

W =angular rotation velocity of sphere.

2E+ i=l-43 are phase lags in the periodic tides

raised by the tidal potential.

These phase lags arise as follows: the tidal potential

acting is written as a sum of periodic terms with different
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frequencies. The response of the tide to any periodic

component of the potential will be in phase with the poten-

tial only if no energy is dissipated by the tide. If the

tide dissipates energy, then its phase will lag that of the

potential (at least on the average). 26o, 2Ej, 2Er1 , and 2P.3

are the lags of the tides with frequencies 2W-2n, 2W-3n,

21-n, and 3 n respectively.

Finally, using the notation set up above, we can state

Darwin's and Jeffreys' result.
ae--6- (G Mp) Rp H e ( .,-49_l .1S2 •-3) (2-3)

TE P P-'- op P 4  P 2 P

where d =d p+d•_ts. p denotes secular rate of change due
a-t~ d- t a-

to tides on the planet and s denotes secular rate of change
dt

due to tides on the satellite.

The formulas for • and H in Jeffreys' paper, however,

contain several mistakes so they will be corrected here.

The elastic tide raised by a potential U=k 2•rS 2  (2-4)

(where S3 is a spherical harmonic of order two and r is the

distance from the center of the planet) is equal to ARp S1 (2-5)

at the surface of the sphere where

A and k1 =3 G Me (2-6). If we write ARp=Hp
(19u 4+2-17

then we find that the surface inequality of the planet pro-

duces an external potential Ulp(r)=3 G MVRVHk.
Ue r3

Using the correct expression for H we get:
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p .9 0 MA 0 M) 19PO ýP - &tElPIf2p*1I3p) (2-7)
ti 2a (l9,#p÷2gppp I Rp)2

If we next consider the tides raised on the satellite

we can modify the above argument slightly to get r s. We

must first realize that W,=n. Hence, 2(4-2n-O,

24-3n=-n, 2W*-n=n and as a consequence Eog-O, and Els-62s.

Furthermore, Ulp above is the potential energy per unit

satellite mass due to tides on the planet. tL15.3G M1 Rg He S2
r 4

is then the potential energy per unit planet mass due to tides

on the satellite. To change this to potential energy per unit

satellite mass, we must multiply TIls by !k . Using the pre-
M

ceding results we have from Jeffreys' formula that

3e U9 MZ4G M) ( GM)M0 25 &2s+393
at- 2 Msa"t(l9j,,s+2gspsRs) TC or

?et 2 13e -9 2(G lgPs÷2gse_25ss (-8

3. Before we can compare the magnitudes of aj and

we must relate the phase lags, 2Ei, to the specific dissipa-

tion function Q. This is accomplished in the following

manner. Let W be the work done on one of our homogeneous,

incompressible spheres by a body force 1(f) which is

derivable from a potential U(?). Then
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d-v(p )-I(•)dr (2-9) where *(?) is the velocity of

the material at point r. Using the equation of continuity

we getUo•. U)-uv.9 )uV.(pu).• U. Since uo, we
bt

have dW.K/o U#-ds (2-10) where A is the outward normal to

the surface of the sphere. If Uccosyt and the surface

inequality is c cos(vt-26) then •.O sin(Vt-26). Hence, we

get dW=Kcos#tsin(Vt-2E.). A simple integration gives to first

order in E,

~dW dt=--UMsinS= fdE dt
E* = W dt=K cos2E. Using (2-2) we get

Q= = 1 or for large Q 26=1. (2-11)

Incidentally, this calculation tells us that •(v) has the

same sign as V since dE dt <o

4. Next I will show how Q compares for two spheres of

the same material but of different size. This behavior is

important for explaining why the inner satellites of the

large planets have circular orbits. (e.g. Saturn I-4V).

Qualitatively one would expect Q to increase with the

size of the body for the following reason. The energy

dissipated, per unit volume, in a cycle, will depend only

on the square of the strains since this frictional energy
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dissipation is a local phenomenon. The peak energy stored

per unit volume, on the other hand, increases for a fixed

strain with the size of the body since the stresses are

increased over the purely elastic ones by the self-gravita-

tion of the sphere. Hence, Q increases as the bodies self-

gravity becomes more important than its elasticity. The

relative importance of elasticity and self-gravity of the

sphere enters into the formula for the tidal surface ine-

quality in the denominator (19/J+2gpR). To examine the

quantitative dependence of 0 on size, we proceed as follows.

from formulas (2-4), (2-5), (2-6) and (2-10) we have the

energy dissipated in a cycle for each periodic component of

the tide equals EC= dWG dt= CLR?6 . where Cb is
ine nen o]dt ( 19At+ 2g*R

independent of / and R. However, the energy dissipated must

be proportional to the square of the strain as mentioned

previously. Therefore, the energy dissipated in a cycle

equals DLR where D, is independent of p and R also.(19A+2gPR)
This last formula is derived as follows. Using (2-5) and

(2-6) we have the surface strains proportional to R2
(l*A+2gpR)

hence the square of the strain itegrated over the volume of

the sphere gives a result proportional to R7 where
(19÷L+2'.R)

we assume the surface value of strain throughout the sphere

as an approximation to get the proportional result. Com-

paring these expressions we get FA = N -where 5 is(9L +2gR)
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independent of) pand R. This gives 2_=I+2j (2-12) where
00 W,

QO is the value of Q for a body where self-gravity is negli-

gible. In the case of liquid or gaseous spheres L=O and 0O

is not defined.

5. In this section the two rates of change of e will be

compared both in magnitude and in sign.

First I shall deal with the question of sign. de
dt

has the sign of -(EOp-49•lp+2a ÷33p). For the Earth, Q
4 4 2

and hence 6, varies by less than a factor of four over a

range of one cycle per second to one cycle per year.8 In

this case Si must be the dominant term and the sign of de
at

is the same as the sign of 2I-3n. While this constant

behavior of 0 with frequency may not be true for all planets

(especially not the major ones) it is still likely that the

61 term is dominant because of its relatively large coefficient.

If this FL term is dominant, we have e for all satel-

lites except Phobos, Deimos, Jupiter V and the retrograde

ones.

In the case of tides raised on satellites the sign of
d-• is the sign of -(3.• 2 5 6 3 .) where '2s and E3 , have

3t_ 2 2
the sign of n and therefore are positive. Hence, 3' <O

d-t
for all satellites which keep the same face toward their

planets.
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Next, we will compare the magnitudes of these two

rates of change of e. From formulas (2-4) and (2-8) we

get

=2 2a. (2-13)

I will examine this ratio in three limiting cases:

i) />p>2gpppRp /I5»2gDs5 R

This is the case of small satellite and small planet and

yields the result

TtE (R. S)2 25E28+363s 1 (2-14)

We see that if the satellite is appreciably smaller

than the planet and has approximately the same rigidity and

specific dissipation function, we get the tides raised on

the planet dominating. This case certainly applies to

Phobos and Deimos.

ii ) /Ap<< 2g ppRp. + /.>>2gspgss

This is the case of large planet and small satellite and

we get

* 29f~ f7 + (2-15)
Fe 1_SJO-d

j-ýlp+=+23p
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In this case no general conclusion can be drawn about

this ratio.

iii) Ajtp42gpfpRp Ms4<2Vgps

This is the case of large planet and large satellite and

gives

i I.R E2+F3(2-16)

In this case we see that the satellite tide wins. This

is made even more striking when we remember that if the

saellite has the same composition as the planet then

so that R (2-17)

6. A discussion of the results obtained in the pre-

ceeding sections is presented. This discussion is intended

to give an explanation of the results obtained so far and

to indicate the range of their validity.

The first point dealt with will be the effect that

tides raised on the planet have on the eccentricity. Let

us consider the case where the period of the planet's rota-

tion is much shorter than the period of the satellite's

revolution and the satellite is a direct one (not retro-

grade). Since the tide raised on the planet is dissipative,
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we have a time lag between the applied tidal force and the

tidal bulge it raises. Because the day is shorter than the

month this time lag means that the tidal bulge precedes the

satellite in longitude. The effect of this tidal bulge lead

in longitude is to produce a couple between the satellite

and planet which adds angular momentum to the satellite's

orbit, at the expense of the rotational angular momentum of

the planet. This is the well-known tidal couple which is

responsible for the secular accelaration of the Moon.

So far our argument has been independent of the ec-

centricity of the satellite's orbit. Let us next con-

sider what additional complications arise when we take the

eccentricity into account and how they feed back to effect

the eccentricity which produced them. In order to simplify

the picture let us think of a very eccentric satellite orbit.

The height of the tide raised depends inversely on the third

power of the satellite's distance and the force it produces

on the satellite involves four more reciprocal powers of

distance. Hence, we have the torque on the satellite de-

creasing as the sixth power of the satellite's distance from

the planet. This steep decrease with distance enables us to

approximate the effect of the tidal bulge on the satellite's

orbit by an impulse at pericenter. With this approximation

the satellite must again pass through the same point at

pericenter, since bound orbits in inverse square force fields
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are periodic. But, angular momentum has been added to the

satellite's orbity hence, the apocenter distance, and there-

force the eccentricity, must have been increased. In fact

the angular momentum of the satellite per unit mass is

L =JG Mpa(l-el) =.'G Mrp(l+e) where rp = a(l-e) is the dis-

tance to pericenter. If we have &LO and Arp=O as discussed

above, then AL=lfW Ae so Ae is positive. Also from2V (1+e)
Arp=O we get A[a(l-e)) =Aa(l-e)-aAe=O or Aa=- Ae so that

Aa is positive also, as we would expect. The previous dis-

cussion, when modified to hold for smaller values of e,

accounts for the tendency of the tide raised on the planet,

to increase the satellite's eccentricity.

The considerations presented above are concerned solely

with the tidal torque on the satellite. That is, they only

make use of the component of the disturbing force which is

perpendicular to the satellite's radius vector. In his

paper on the Moon's eccentricity, Groves also considered

only the tidal torque. It is not surprising then, that he

found the Moon's eccentricity could only increase due to tides

on the Earth. This neglect of the radial components of the

disturbing force renders the above arguments, and those of

Groves as well, incomplete. We shall consider how the pic-

ture presented up to now is altered by the inclusion of

radial forces.
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We shall again take an eccentric orbit about our planet.

The relevant points are identical with those presented in

section 1. There it was shown that the tide raised on the

satellite produces only radial perturbation forces and since

these cannot change the satellite's angular momentum, but

must decrease its energy, they must also decrease its eccen-

tricity. The preceding argument, when applied to the plane-

tary tide, shows us that this tide may decrease as well as

increase eccentricity. The details of whether we have de-

creasing or increasing eccentricity depend on the satellite's

revolution period, the planet's rotation period and the ampli-

tude and frequency dependence of Q(v).

The applicability of our results to the actual planet-

satellite systems extant involves two questionable assumptions.

The first assumption is the neglect of all tides except

the aolid body ones. It has recently been demonstrated,

that in the Earth-Moon system, the ocean tides which in the

past were thought to be of major importance are really much

less important than the solid body tides. This conclusion

would undoubtedly also pertain to Mars. For Jupiter, Saturn,

Uranus and Neptune, however, turbulent tides ini their at-

mospheres or possibly in any liquids which may be found on

these planets, might be of greater importance than the solid

body tides. We can still use the two parameters U and Q to

fit the tides on these planets, although we can no longer
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hope to make very good estimates of their frequency and

amplitude dependence. The satellites of these planets are

almost certainly solid since they are not big enough to have

held the heat necessary to keep them liquid and are not re-

ceiving enough heat to do this either. Before leaving this

question of the composition of the major planets, it should

be mentioned that for Jupiter, measurements exist which have

been used in the past to calculate a lower bound for 0. This

question will be taken up in the following paper where it will

be shown that although the measurements may be correct, their

interpretation is not.

The second serious approximation we have made in the

pretense of a linear superposition for the tides of different

frequencies. In developing formula (2-7), Darwin and Jeffreys

both wrote the tide raising potential as the sum of periodic

potentials. They then proceeded to consider the response of

the planet to each of the potentials separately. At first

glance this might seem proper since the tidal strains are

very small and should add linearly. The stumbling block in

this procedure, however, is the amplitude dependence of the

specific dissipation function. In the case of the Earth, it

has been shown by direct measurement that Q varies by an order

of magnitude if we compare the tide of frequency 2ta-2n with

the tides of frequencies 2W-n, 2W-3n and 3n. This is because
2

these latter tides have amplitudes which are smaller than
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those of the principal tide (of frequency 2k#-2n) by a factor

of eccentricity or about .05. It may still appear that we

can allow for this amplitude dependence of Q merely by adopting

an amplitude dependence for the phase lags of the different

tides. Unfortunately, this is really not sufficient since

a tide of small amplitude will have a phase lag which increases

when its peak is reinforcing the peak of the tide of major

amplitude. This non-linear behavior cannot be treated in

detail since very little is known about the response of the

planets to tidal forces, except for the Earth. In our dis-

cussions we shall use the language of linear tidal theory, but

we must keep in mind that our numbers are really only para-

metric fits to a non-linear problesm.

There is one more assumption which is implied in this

paper. It concerns the neglect of direct gravitational in-

teractions between bodies in influencing the eccentricities

of the satellites. Celestial mechanicians in particular,

would consider this omission to be a very serious one over

periods greater than a few thousand years. This is because

their calculations will not guarantee the stability of sa-

tellite eccentricities, perturbed by direct gravitational

interactions, for periods greater than these. To this objec-

tion one can only offer the belief that for well-space orbits,

direct gravitational interactions alone will not endanger

stability in eccentricity, even over ages comparable to those

of the solar system.
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7. The development of the orbit in time will be taken up

in this section for use later on. From Jeffreys' paper9 we

have

dt a%• (l94p+2gpppRp)

In the absence of better information, Q is taken inde-

pendent of frequency and amplitude in this section. This

enables us to integrate the above equation which gives:

a=[117 (G Mp (G M),PPRPEp t +a
1 0 1 where a=a at t=O.

If we set S&o to =1-03 equal to* F. then

--re ec(G My) (G Ms)RjpE
dtp =a%(19Up÷2gpPPRp

T e - 7 2 (G M ) R es r,3
7t= aO (19/4+2g"Rs)

oLis a numerical coefficient which depends on the sign of

the various E&.

In any case

a-s : Le sole :=,a Iwhere e=eO when a-a, ., will be evalua-
da a \eo l
ted separately in each case in the following sections.

8. Numerical estimates for 3e are made in this section
dt

for several different satellites.

i) The Earth-Moon System

Since we have more information in this case than in any
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other, it will be investigated in greatest detail. JeffreysI 0

uses 3 for the Earth, with a homogeneous sphere model.

If we uae the same value of /4 for the Moon as for the Earth,

then we get

m-. -228(1738)(4,f . -.7 owhere Qo is the value of Q
do 00. Qos

for the material when self-gravity is negligible, as dis-

cussed in section 4. If Qox5 Qop then the eccentricity of the

Moon's orbit would be increasing. However, there are two con-

siderations which tend to increase the importance of the tides

on the Moon. In the first place, the rigidity of the Moon is

likely to be smaller than that for the Earth since the high

rigidity of the Earth is due to high pressures in the interior.

Furthermore, the strains on the Moon are larger than those

on the Earth by a factor of 4.9, for the value of rigidity

given above. It is known that for the Earth Q decreases

with the amplitude of strain1I and this would probably also

be the case for the Moon.

The above would be considerably altered if ocean tides

were significant contributors to 0 on the Earth, but recent

evidence 1 2 seems to rule out this possibility. If we take

PIL... = -1.4 o. We thus see that small changes in

rtP
the parameters / and 0 alter the sign of r; so that the

dt
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results for the Moon must be considezed inconclusive.

If we determine the value of 1 , for the
(1 9 Ap+2gpppRp)Qp

Earth, from the present observed secular acceleration of the

Moon, we can use this information to determine the evolution

of the semi-major axis of the Moon. MacDonald has done this

and claims that the data is consistent with having the Moon

close to the Earth between one-half and one billion years ago. 1 3

Ignoring the difficulties which arise from such a situation,

we can make the following observation in regard to eccentri-

citys if the rate of eccentricity change is dominated by

tides on the Earth, then we get (L) = (a)Ii (2-20)

For a,= 10,000 km., a = 380,000 km. and e = .055 we get

eo = 5x10-6 (Groves gets 2%10-6) which seems very small, es-

pecially when compared with the eccentricities of other sa-

tellites in the solar system, for which planet tides produce

negligible secular accelerations. On the other hand, if e

has been decreasing and we assume its initial value was less

than ee = .5, we get the followings From the result

(e aW we get -.649<0, so we see that 38 <1l.25I 3ej

and the two rates of change must have almost canceled each

other. In any case, it seems likely from the preceding that

whether the Moon's eccentricity is increasing or decreasing,

the two tidal effects are close to being equal in magnitude.

It is worth noting, in this context, that the Moon's eccentri-

city is higher than that of all other inner satellites in



-36-

the solar system.

ii) Mars

As explained in section 5, Phobos and Deimos are covered

by case i), section 5 and 'e- /39- p<l.

a) For Phobos .p, E 1p and E.2p, are all negative while

E3p is positive. This tells us that do p is almost certainly

negative. This agrees with the observed low eccentricity of

.019 for Phobos. It is still necessary to show whether the

tides on Mars could have appreciably altered the eccentricity

of Phobos in the age of the solar system, which we take as

four billion years. Using the sameilp for Mars as is used by

Jeffreys, 1 4 we haves

•t-p . _975x10- 1 5 e sec-I at the present time. Next, using
op

0-100, which is a typical value for low amplitude tides on the

Earth, we get 1 de -9.75A10-17 sec-1. Since 4,109 years

= .21 17 sec rt1.2X101 sec we see that e could have been appreciably de-

creased by tides on Mars. It should be borne in mind that

the semi-major axis of this satellite is decreasing, since

the satellite's period is shorter than the Martian day. This

means that -1 de was smaller in the past than it is now.

Using formulas (2-19) and (2-20), one could carry this analysis

out to include the integration over the past four billion

years.

b) For Deimos, we have Elp negative while top, &2p and

63p are all positive. This assures us that F jp is definitely
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negative for Deimos. Again using Jeffreys' numbers we have,

taking Qp - 1001 1 3 = 4.5 10-20 -l so we see that in

4x10 9 years, or 1.2 1017 hec., the tidal forces will make a

negligible change in e. For Deimos, the semi-major axis is

increasing due to the tides but at such a rate that this

effect may also be safely neglected.

Since the eccentricity of Deimos is .003, we are forced

either to accept the conclusion that Deimos was formed

with this initial eccentricity or to find some other pro-

cess that might have decreased the eccentricity of this

satellite. In the following paper one such mechanism is

proposed. It involves the direct gravitational interaction

of Phobos with Deimos coupled with the tidal forces on Phobos.

It is shown there, that the rate of change of Deimos' eccen-

tricity due to this process, could have been significant over

a period of four billion years.

ii) Jupiter, Saturn, Uranus and Neptune

As discussed in section 6, the satellites of these

planets are likely to be solid, while the state or states

of the planets are uncertain.

For Jupiter V the planetary, as well as the satellite,

tides decrease the satellite's eccentricity. These tidal

effects are very likely to be significant and probably account

for the satellite's low eccentricity of .003.

For all the other satellites of these planets, except



-38-

for the retrograde ones, the planetary tide increases the

satellite's eccentricity. These satellite planet systems

probably can be approximated by case ii) of section 5, if we

assume i's of the order of those of ice. If we write equation

(2-15) in terms of QGos and Oop, we gets

aT p fp Qos 0 Rp

If, for simplicity, we consider the case of a planet and

satellite of the same material, this becomes

lit .a.28/2gnpVR Since 2gy0pRy>l, we see that

3e 1p \ 19A#p

all satellites with Rea 1 9 . will have decreasing

eccentricities, while those with R.413A r_ will have

increasing eccentricities.

After this brief and very speculative discussion, we

can only appeal to observation, which shows small eccentrici-

ties for the five inner satellites of Jupiter, the six inner

satellites of Saturn, the four major satellites of Uranus and

the inner satellite of Neptune. In all cases where the eccen-

tricity is less than .01 we finds - Te- ?1.2xl20 17sec-i fbr
e f

reasonable values of Q's and/&'s. This seems to indicate that

tides raised on satellites are of great significance in the

evolution of the eccentricities of these satellites.



An Explanation of the Frequent Occurrence of Near-

Commensurate Mean Motions in the Solar System

Introduction

In this paper an explanation of the improbably large

number of near-commensurate pairs of satellite mean mo-

tions is proposed. It is shown that special cases of

near-commensurate mean motions are stable under tidal

forces. Furthermore, at least four of the best illustra-

tions of commensurabilities in the solar system have this

stability. Finally, the significance of these stable con-

figurations on the evolution of satellite systems is dis-

cussed.

1. The existence of near-commensurabilites among the

mean motions of the satellites and planets in the solar

system has been known for many years. The most famous of

these commensurabilities involves the Jovian satellites

Io, Europa and Ganymede. Within observational accuracy,

the mean motions (ni, n2 and nj respectively) of these

satellites obey the relation n, -3n,-2nq =0. The motions of

these satellites have been studied in great detail, first

by Laplace, and subsequently by many other authors. In

addition to this three-body commensurability, several cases

-39-
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of near-commensurabilities between the mean motions of

two satellites have also been known for quite some time.

The motions of these pairs of satellites have also been

intensively studied since they yield data from which a

determination of the satellite masses can be made.

More recently, A. 3. Roy and M. W. Ovenden 1 , 2 have

examined the mean motions of pairs of planets and satel-

lites in a new light. They considered the question of

whether the observed number of near-commensurate pairs of

mean motions in the solar system was too great to have

arisen from a ;andom distribution of mean motions. As

this paper is intended to provide answers to several

intriguing questions that they raised, we shall begin

with a general discussion of the contents of their two

papers.

In their first paper, the authors arrived at the con-

clusion that the preference for near-commensurate mean

motions in the solar system is inconsistent with the

assumption of a random distribution of mean motions for

the planets and satellites. A sketch of their proof of

this important result will be presented next.

Before we can prove anything, however, a sharper defi-

nition of near-commensurate mean motions must be given.

Let n, and n 2 (n,' n%) be the mean motions of two bodies

about a common center of force. If two integers, A, and

A2 exist, such that " - AfI-& where F, is a small
inj Alln
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positive number, then theme mean motions are said to be

nearly commensurate. Since the ratio n4 can always be ap-
ng

proximated with arbitrary accuracy by the ratio of two in-

tegers, it is necessary to limit the size of the integers

considered. In their paper, Roy and Ovenden arbitrarily set

this limit for A, at seven. This restriction to small in-

tegers in no way limits the scope of the discussion. In

fact, it can easily be shown from perturbation theory that

the importance of near-commensurabilities decreases as

their order increases. Using our definition of near-commen-

surability, we can assign two integers, A, and A,, to every

pair of mean motions, n, and n1 , whose ratio n2•l. Since theni 7
smallest difference between adjacent fractions is 1-1=1,

there can be at most one pair of integers, A1 ,A2 for each

pair of mean motions, n1 , n, such that1 n'an -a .Ecl =.01190.

From A, and A-, with A1:7, we can form 17 fractions with

valies from 1 to 1. Thus, given E.-.01190, the probability
7

that a randomly chosen ratio in the range 1 to 1 lies within

Foof some fraction & is Pe,=17•2&ox7 =39.67Eo Roy and
Ag V

Ovenden considered 46 pairs of mean motions and compiled a

table which compares 46PE, for various E&..01190, with the

observed number of pairs of mean motions for which a near-

commensurability exists with &!-, This table, minus the

control distribution data, is reproduced below.
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so .0119 .0089 .0059 .0030 .0015

46PF,* 21.7 16.2 10.8 5.3 2.5

Observed
number of
pairs of 33 26 20 12 6
mean mo-
tions with
St So

Table (3-1)

As Roy and Ovenden pointed out, there are two reasons

why the observed number of near-commensurabilities, which

are listed in their table, might be misleading. In the

first place, if n1 has a near-commensurability with both

n, and n3, then it may also be the case that nS is nearly

commensurate with n1 * If this is so, then it is unclear

whether the commensurability between n, and n3 should be

considered as an independent one. In their paper, Roy and

ovenden showed that this problem of "multiple counts"N was

likely to affect the number of independent observed commen-

surabilities listed in table (3-1), by 2 or 3 for 6,-.0119

and even less for smaller So. The second source of error

arises from the nonuniform distribution of the ratios a&

on the interval 1 to 1. In fact, no ratio exists which

is greater than .75. While it is difficult to correct

accurately for this effect, the authors do show that it

should not affect the expected number of near-commensurabi-

lities, for a given f,, by a factor very different from .925.
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In light of the preceding discussion, we see that the

distribution of mean motions very definitely deviates from

randomness but that it is difficult to say precisely how

large this deviation is.

In their second paper, Roy and Ovenden prove that, "if

n point-masses are acted upon by their mutual gravitational

forces only, and at a certain epoch each radius vector from

the (assumed stationary) center of mass of the system is

perpendicular to every velocity vector, then the orbit of

each mass after that epoch is a mirror image of its orbit

prior to that epoch." The authors call this theorem the

mirror theorem and the special configuration described above

is called a mirror configuration. As a corollary of the

mirror theorem, the authors prove a periodicity theorem

which states that, "if n point-masses are moving under

their mutual gravitational forces only, their orbits are

poriodic if, at two separate epochs, a mirror configuration

occurs."

After proving the preceding theorems, Roy and Ovenden

suggest that the frequent occurrence of mirror configura-

tions will cause perturbations on the orbits to undergo fre-

quent reversals so that the disturbances they generate cannot

build up to magnitudes so large that they endanger the sta-

bility of the motion. For a definition of stability, the

authors adapt Poincare's conditions, namelys
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i) The heliocentric distance of any planet cannot increase

or decrease without limit.

ii) The system repeatedly passes through the configuration

it had at time to, say at times ti, t%, t 3 , etc.

iii) Close encounters of any pairs of planets are ruled out.

(The conditions for satellite orbits are analogous).

Finally, Roy and Ovenden examine three of the best

cases (i.e., those for which E is smallest) of near-commen-

surabilities in the solar system. These include three pairs

cf satellite orbits in Saturn's system: Hyperion and Titan,

Enceladus and Dione, and Mimas and Tethys. The values of

nL -_A for these satellite pairs are -0.000566, +0.000643
ni At
and -0.000784 respectively.

Observation provides the following remarkable results:

Conjunctions of Enceladus and Dione always occur near the

perisaturnium of Enceladus. For Titan and Hyperion, the

conjunctions always occur near the aposaturnium of Hyperion.

For Mimas and Tethys, the relation involves their nodes and

the conjunctions of these two satellies occur near the mid-

point between their two ascending nodes on Saturn's equator

plane.

The examination of these satellite pairs thus reveals

that they satisfy the mirror theorem, at least to a first

approximation. The nature of this approximation and its

significance will be the subject of the rest of this paper.
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2. Before we can proceed to the discussion of the stabi-

lity of these near-commensurate mean motions, we must out-

line classical perturbation theory.

We shall describe the orbit of a satellite of mass m,

about a planet of mass M, by the following six elements:

a is the semi-major axis of the orbit.

e is the eccentricity of the orbit.

i is the inclination of the orbit to the planet's equator.

Alis the longitude of the ascending node.

Wis the longitude of the perihelion.

=W=A4 w where w is the angle between the ascending

node and the perihelion.

Eis the mean longitude of the satellite at epoch.

To give the position in the orbit, we will use the mean

longitude A X= fndt +E,

n =FE 1 for motion about a spherical planet. It is

called the mean motion since nm•where P is the satellite's
P

revolution period.

For unperturbed motion about a spherical planet, a,

e, ifif , and 6 are constants. If the motion is perturbed,

however, then a, e, i,fL,W, andS will, in general, vary

with time. If V(?) is the total potential per unit mass

acting on the satellite, then R(T) is defined to be Vt})-2.M
r

and is known as the disturbing function. In terms of the

disturbing function, we can write the equations of motion
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for a, e, i,A, C, and E. In what follows, R is considered

to be a function of a, e, i,.n,iV, andA. For simplicity,

we shall neglect powers beyond the second in the satellite's

eccentricity and inclination. This allows us to writes 3

da=2

de= -1 aR
3't -naye- aC

di= -1 &R

"(3-1)

t na ba

rt na'fli e

Perturbations of the first order are obtained by

treating a, e, i, and n=wlBas constants on the right-handa A
sides of the perturbation equations, while the mean longi-

tude, A , is treated as a linear function of the time. We

shall deviate from comon practice, however, and allow for

secular motion of W andi.n.when we treat the periodic terms

in the disturbing function. The only restriction this

places on our development, is that it forces us to treat

the secular part of the disturbing function first.

The disturbing function for the action of a satellite

with mass m' on one with mass m is given by
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R-Gm' 1.-xe +v, +ss/
( A (r ,) P '

Coordinates are measured from the center of the planet.

Primes refer to the disturbing satellite.

1 (x-xl a +(y-y, 9 +(z-z- ?

It can be shown that R can be expanded in the following

forms 4 R=IF(a, a', e, e', i, i' )cosT

where Tm[hA+h'X' .gtf+g'W'+fn.+f/J'nJ (3-2)

The requirement of rotational invariance gives us the single

restriction

h+h' +g+g' +f+f~ '=0. (3-3)

The results obtained from first order perturbation

theory are only approximate due to our treating a, e, and

i as constants in the right-hand sides of the perturbation

equations. If necessary, the calculations can be extended

to higher order (the order is measured by the power of uf)
H

perturbations. This is done by substituting the results of

the first order calculations in the right-hand members of

the perturbation equations for a, e, i,fl,R , and S. We

shall need higher order perturbation theory when we discuss

commensurabilities of more than two satellites. One result

that we shall quote for later use is Poisson's theorem on

the invariability of the semi-major axis. This theorem

states that there is no secular term, due to gravitational

interactions between satellites, in the expression for the

semi-major axis, both in the first and second orders of

perturbation theory.
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Since we will apply perturbation theory in cases where

near-commensurabilities exist, a brief summary of the effects

of near-commensurabilities in perturbation theory will be

given next. If we write RulCcosT, then the perturbation

equations yield, upon integrations

6a a1- R, coT +Run(hn~h' l zY (hn~hl n' )

61e 1- C jcosT d.nu 1 sinT(hn~h'n rC}hn~h' n' )

t-- osT &e Cs•÷ inT(hn~h' dl (hn~h' n')

(Note 61 denotes first order perturbations).

Here, in the interest of simplicity, 0 andiL have been

treated as constants in the right-hand members of the per-

turbation equations. From the definition of A- f ndt+ F,
we see that

&Af S ndt+

C• 'sinT + C"' sinT
S(hn~h' n' )T (hn+hl n' dJ

A near-commensurability means that one of the expressions,

h*n+l(* n', is very small compared to n or n'. From the

expression above, we see that a near-commensurability im-

plies an enhanced amplitude for perturbations with period

h*n÷1•* r/ . Since only WA has the small divisor squared, we

see that the principal effect of a near-commensurability will

be observed in the mean longitude.
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3. We are now in a position to investigate the stability

of near-commensurate mean motions. Our considerations will

find application to the two-body cases of Enceladus and

Dione, Mimas and Tethys, and Hyperion and Titan, as well as

to the three-body case of Io, Europa and Ganymede. Other

possible examples of stable commensurabilities to which these

results might also apply are mentioned in section 10.

As a start, we shall consider a planetsurrounded by

several satellites which move on well-spaced orbits of low

inclination and eccentricity. We shall make the assumption

that the tidal torques on these satellites have produced

considerable evolution of their mean motions over a period

comparable to the age of the solar system (which we take as

four billion years).

Let us make the further assumption that the tidal

evolution of the mean motions of each satellite is inde-

pendent of the other satellites. This independent evolu-

tion of mean motions is implied (at least to second order

perturbation theory) by Poisson's theorem on the invaria-

bility of the semi-major axis (see section 2). Since, in

general, the mean motions of different satellites will

evolve at different rates, the ratios of the mean motions

of pairs of satellies will vary with time. In so doing

they will occasionally pass through a low order commensura-

bility. However, at any one time, the ratios of the
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satellites' mean motions will exhibit a tendency for near-

commensurability which is consistent with a random distri-

bution of mean motions. Such a situation would certainly

fail to explain the strong tendency for near-commensurate

mean motions that is observed among the satellites of the

solar system.

If, on the other hand, these near-commensurabilities

were stable, then we could account for the large number of

observed near-commensurabilities. Suppose, for example,

that during the tidal evolution of mean motions, the ratio

of the mean motions of two satellites approaches very

close to the ratio of two small integers. If a near-commen-

surate motion of these two satellites exists, which is

stable under further tidal evolution, then the satel-

lites will remain in the near-commensurability rather than

merely passing through it. However, the tidal torque on

each of these satellites will not be affected by such a

near-commensurability of the satellite mean motions. This

being the case, in order for the further evolution of the

satellite orbits to proceed without disrupting the near-

commensurability of the mean motions, angular momentum

must be secularly transferred between the satellites. At

first sight this condition might appear to be a violation

of Poisson's theorem on the invariability of the semi-major

axis. However, the proof of this theorem involves the
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assumption that the arguments of the periodic terms in the

disturbing function are not constant. As we shall see

later on, this is just the condition which occurs in the

cases of stable commensurabilities.

We now see that the orbits of a pair of near-commen-

surate satellites will still evolve an the tides feed

angular momentum from the planet's spin into the satel-

lites' orbits. However, the satellites will share this

angular momentum between them in just the correct propor-

tion so that their mean motions remain near-commensurate.

The question of which near-commensurabilities are

stable will be dealt with next. From the discussion of

the previous paragraph we see that a necessary condition for

the stability of a near-commensurability is that the direct

gravitational forces between the satellites involved are

strong enough to be able to distribute the angular momentum

fed into the system by the tides in the manner necessary to

maintain the commensurability relation. Application of this

condition will enable us to place bounds on the tidal torques

of some satellites. This, in turn, will imply upper bounds

for the dissipation of the tides within the planets.

An examination of these direct gravitational forces

reveals that they decrease rapidly as the order of the com-

mensurability increases (see section 9). This accounts for

the low orders of the observed near-commensurabilities (e.g.,
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2 to 1, 4 to 3 etc.). W'hen the direct gravitational force.

are so weak that they cannot transfer angular momentum

between the satellites at a sufficient rate, the two satel-

litem' mean motions will evolve independently, each at a rate

determined by the tidal torque on the satellite.

An discussed in section 1, the orbits of several pairs

of the best examples of near-commensurabilities demonstrate

remarkable regularities. Not only do these satellite pairs

exhibit near-commensurabilities, they also show a relation

between their conjunctions and one or more of their orbital

elements. Since the conditions relevant to the various satel-

lite pairs differ only in detail, we shall concentrate our

attention on the system of Enceladus and Dione whenever an

explicit example is called for.

Denoting the orbital elements of Dione by primes, we

can state the observations in the form below (see section 2

for a definition of these elements).

2n' -n-M 0 and

2A -A-W=V where V oscillates about

0* with a small amplitude. (Actually, as we shall see

later on, V should oscillate about an angle very close to,

but not equal to 00). The second relation states that con-

junctions of Enceladus and Dione always occur near the peri-

saturnium of Enceladus. Thus we see that this commensurabi-

lity relation implies that the term in the disturbing
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function with argument V can produce secular changes in the

semi-major axis. (Actually, these secular changes only

occur when V oscillates about an angle different from 00).

This invalidates the proof of Poisson's theorem as explained

previously. It may also be noted that what we have here

should not be considered as a near-commensurability of mean

motions but rather as an exact commensurability involving

the mean motions of Enceladus and Dione together with the

motion of the perisaturnium of Enceladus. The fact that we

have a near-commensurability of mean motions is just a con-

sequence of the small size of P.

Roy and Ovenden tried to show that these near-commen-

surate satellite pairs satisfy the hypotheses of their

mirror theorem. In the approximation that the inclinations

of Enceladus and Dione are neglected and that the eccentri-

city of Dione is taken as zero, we see that this is the case.

Furthermore, even when the eccentricity of Dione is taken

into account, it may still be argued that mirror configura-

tions do occur. However, in the other cases of near-commen-

surability described by Roy and Ovenden, mirror configura-

tions only occur in a first approximation to the actual

orbits (e.g., when only one eccentricity is taken as non-

zero or when both inclinations are considered to be equal,

etc.). Finally, Roy and Ovenden remarked that when the

mirror configuration was only approximately satisfied,
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librations in the longitude of the satellites took place.

The significance of these librations to their argument is

unclear to the present author. However, it is well-known

that these librations arise from terms in the disturbing

function of very long period. For Enceladus and Dione, one

such term has argument W=2A' -A-W. This argument can be

rewritten as W=2X-A-_+(_Is)f(O_,). This is Just the

term which gives rise to the libration of period 3.89 years

discussed by Roy and Ovenden in their second paper.

We have proposed that the near-commensurabilities are

a consequence of the tidal evolution of satellite orbits.

If this hypothesis is to be tenable, then the tidal evolu-

tion of the satellite systems involved must have been ap-

preciable in the age of the solar system. Using the data

tabulated by Jeffreys5 we can express di, (S is defined by
dt

n=nog" 3 where no is the present mean motion of the satellite.

Hence, dn=-3_4 at the present time) for the various satel-
dt dt

lites in the solar system. In doing this, we take a homo-

geneous sphere model for the planet. /I is its rigidity,

o its specific dissipation function, o its density, g its

surface gravity and R its radius. The tabulation below in-

cludes all satellites, about planets having two or more

satellites, for which

dt/(1+I2k)QZI0"17 
sec"! .

dt/ 2yR
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Satellite 2t x A /(1÷+942 )a a ec'

Phobos 2.6xl0-

Jupiter V 7.0lO'I

Io 4. gxlO "

Europa 1.6y.10-14

Ganymede 2.5*lO "

Callisto 4.0.i0"n

Mimas 4.0lO-'

anceladus 1. 6lO'"q

Tethys 3.2ilO-"
Dione 1.0OAl0"14

Rhea 2.0 i0

Titan 6.9%10O16

Ariel 2.3xl0"-

Table (3-2)

In our notation 1 is equivalent to sin2& in Jeffreys' nota-
Q

tion. Also of importance is the fact that 4A109 years

1.2%1017 seconds. Integrating Jeffreys' equation for

1 dn, we find that if n is the present value of the mean

motion of a satellite, then the mean motion of that satel-

lite was many times larger T years ago, where T=I d

it is evaluated at the present time. (This only applies

if Q>0. If d<0O, then n was smaller in the past). From
dt dt
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this formula we see that for satellites whose present values

of i are greater than 6.4lO19 sec"1 , appreciable evolu-

tion of their mean motions has occurred in the age of the

solaz system.

From the discussion to follow, we shall see that the

stable commensurability relations are between Mimas and

Tethys, Enceladus and Dione, Titan and Hyperion, and Io,

Europa and Ganymede. It is also likely that lo and Europa,

Europa and Ganymede, and Ganymede and Callisto form stable

two-body commensurabilities and that Dione, Rhea and Titan

take part in a stable three-body commensurability.

From Table 2 we see that in all the above mentioned

commensurabilities at least one of the satellites involved

has &.69xlO- sec" . This indicates that even with
dt

1 as small as 10-l , the tides would still have

produced considerable changes in these systems in the past.

For Jupiter i+129L.' cannot be much greater than 1 and it
2c0R

probably is near 1 for Saturn also. This implies that Q

for Jupiter and Saturn is about i0q.

If we turn the above argument around then we can ask

the following question: What percentage of all satellites,

for which dS I -->I0- sec-1 and for which another
o ./Q(l9,+19)"

satellite exists with period differing by less than a

factor of seven from its period, are involved in a commen-

surability relation? Inspection of Table 2 tells us that
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every satellite, except Phobos, which satisfied the pre-

ceding conditions, is part of at least one definitely

stable commensurability relation. Furthermore, it is no

surprise that Phobos is not part of a stable commensurabi-

lity with Deimos, the other satellite of Mars. The mutual

gravitational interactions between Phobos and Deimos will

be very weak since both satellites are extremely small

(about 8 and 4 km. in radius, respectively). If we look

next at the same group of satellites but consider those for

which I 1+ .694107L sec&1 then we find that they

all are involve in a commensurability relation except for

Phobos, Jupiter V, Ariel and possibly Rhea.

The arguments presented in this section seem to imply

a tidal origin for the commensurabilities and a Q of about

104 for Jupiter and Saturn. In the following sections of

this paper other estimates of Q will be obtained.

4. In this section the details of a stability proof

for near-commensurate satellites will be presented. As a

start, we shall consider the following idealization of the

system of Enceladus and Dione. Two sakellites with masses

m and m/ move in orbits about the same planet. The

following restrictions are placed on their orbits:



-58-

M'CC 1 ~ l 1€ of =0 imil -0 a',- a.
M M

The question of whether a stable motion exists for these

two bodies such that 2n'-n-W=O, is the one we shall attempt

to answer. = refers to the observed secular rate of change

of 0.

In line with the comment made in section 2, we shall

nottreat Mas a constant, but shall include all motions of

W due to secular terms in the disturbing function of m.

Henceforth, we shall write W=ý÷+4t. An important distinc-

tion must be made between 3 and M. F is the observed

secular motion of W. EU, however, is just that part of this

secular motion which is produced by secular terms in m's

disturbing function. Due to the commensurability relation,

the periodic terms in the disturbing function, which have

argument 2X -A-l, also produce secular motions of W. These

are included in 3._ but are not included in ti.
dt

In our stability proof, we shall neglect all periodic

temrs in the disturbing function except the ones with argu-

ment 2Ag-A-;-. It is easy to see why the terms with this

argument might cause concern. By hypothesis, this argument

has zero secular rate of change. Substituting these terms

in the perturbation equations, one sees that they produce

secular changes in the elements. It might be suspected

that these secular changes will disrupt the relation

2n'-n-_=O. However, we shall show that under certain
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circumstances this does not happen.

Terms in the disturbing function whose arguments are

integer multiples of 2A'-A-W can be neglected, since their

coefficients are smaller than those of the terms with

argument 2A'-A-W-by e raised to the power of the absolute

value of the corresponding integer multiple. All periodic

terms whose arguments are not multiples of 29 -A-9 produce

only small magnitude, short period perturbations of the

orbits since their amplitudes are not enhanced by integra-

tion (see section 2). Finally, the theorem stated in sec-

tion 2 concerning the invariability of the semi-major axis

tells us that we do not have to worry about secular terms in

the disturbing function.

The stability proof runs as follows: Let

1=2k -A-D, then the terms in the disturbing functions with

this argument are, to first order in e,

Rt --eGm'[(44ukd)Aa(ok)] cos #

Rif eGm (4i.Kd )A2 (oq)coo.

where ck'=, and A1 (0W is a Laplace coefficient. Al can be
a'

expressed in terms of elliptic integrals. We shall need

the value of C(O)u(4+9(d )A1 (Q) when we apply our results to
do(

the system of Enceladus and Dione, but at present we shall

proceed without it.

Next, the first and second time derivatives of § will

be evaluated.



-60-

AZ=2M-4&-gu2n' -n+i2L-d

Ajm2 n1 -n+2 F #-E - ,2f~-46-

In the above, we have sets 6 uEe+,&t, el= eE.+ Ft and

W=&.÷&t. 6., F'and are just the motions of 6, 1

and Z due to the secular terms in the disturbing function.

Since we are restricting our analysis to first order per-

turbation theory,

Using the perturbation equations (3-1), we can now writes

/~n M1 a 2 (at cost
dt aR-

t•=-e(••[ C(cK) +(a• JdCok coal) (3-4)

t M Wla'JI

Taking another time derivative of • we gets

!I =2dn' -dn-ne( m,1 dCa o2)sinj•dL

-2n~~a)[~oQ+ dC(oO. sinf§j-2nle(M) [ C(0 3)÷(H• 71(,•(='=sl''d
Malldo'. dt

+n_.il, 9a C(c))sind_•
2e 1 a#~ dt

From nta 3 =G M, we have dn=-31ni da (3-5)
dt 2 |al"

Using this expression we can re-write the equation for

as follows:
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[nr~ ~ + ne~ Z4 (3-6)

In some circumstances, the term containing sin' Pt

may be neglected. If this term is dropped and if we use the

fact that C(o) is positive (C will be computed at a later

stage), then we see that the equation for 4 reduces to that

of a simple pendulum. As is well-known, this equation can

always be solved in terms of elliptic functions. However,

for the case of Enceladus and Dione, a small amplitude

approximation is justified. This yields:

• :jsinvt where V=-3eC(W) j4(I + ( nJ (37)

Hence, our result proves that this special case of a near-

commensurability will not disrupt itself.

We are now in a position to formulate the condition

under which the term containing uin ff may safely be

neglected. For simplicity, we shall restrict ourselves to

the case where m/ is considerably bigger than m. In this

case, the ratio of the neglected term to the one which was

retained becomes:

r=• • . Ift -•osinVt, then the largest value that

r can take i Ca (3-8)
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The next point to be dealt with is the stability of

the relation 2n -n-t when tidal forces are present. In

this connection, we will make use of Jeffreys' paper which

implies that the rate of change of mean motion due to tidal

forces is given by

-r R(3-9)Ma (1+19p/2gR

where the notation is that used in section 3. Rewriting

equation (3-6) to include tidal effects (again we neglect

the sinI j term), we get

4d=- i,-sinl+2d--r -dnd (3-10)

dt dt dt

If the tidal effects are weak and if the small angle approxi-

mation can be used, this case gives

S= •osinVt+l (2n -dn7 = ,sinVt+ • (3-11)

MF dt dt /

so that the only effect produced by the tides is a phase

shift I in f. Hence, we have shown that weak tidal forces

do not upset the relation 2ni -n-p. The remarkable fact

is that this relation is maintained as the satellite system

evolves under the action of the tides.

If, on the other hand, we had a case for which

1 2 nt.then \ n a t) (3-12)

and the relation 2n' -n-P=0 would be broken down by the tidal

forces.
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5. This section will contain a numerical application of

the results of the last section to the satellite system of

Enceladus and Dione.

The data is given below.

Enceladus Dione

P. ol.370218 days P'.u-2.736916 days
n n

e ..0045 e'= .0021

i = 0.00 i'= 0.00

2=123.430 per year N7-30.74* per year
adt at-

1 0( a u.631

Table (3-3)

Using the recurrence relations for the Laplace coeffi-

cients, we arrive at
C (cý) 50• 5- 2) b;% + (4÷3ok-I 0%q )b'y

3ok ( oQ

where b= ' 4 a

IT (1-o'sin'4e)• ,
b~ r j f1 (1 do]

Foro(..631 we get C(Ok)=1.79. This establishes that C(0470,

a fact which we have used before.

Calculations of r' and I can be easily carried out now.

They yield

Z*4 8.4510cr-3
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= -2.44 10-2 radians (3-13)

From the value for r* we see that our neglect of the

sin !L term was justified. The value of the phase shift

appears to be quite small. Even if 1+19 =1, it is pro-

bably too small to be observed since Q is likely to be

greater than 100 for Saturn (see section 3).

6. The system of Titan and Hyperion is similar to that

of Enceladus and Dione. If we let primes denote quantities

related to Hyperion, then we have 4n'-3n-c'V0 and the angle

F=4W'-3A-01 oscillates about 1800. This motion can be shown

to be stable under tidal action in exactly the same manner

as before. Unfortunately, in this case, the phase shift

due to tides is even smaller than that for Enceladus and

Dione and offers no hope for direct observation. Finally,

the term in the disturbing functions with argument

4Qý-3\-D' is R=e'2, [(7 .od_)A 3 (0k)1 cosj
2a' I do' . (-14)

fee =e'Gm r(7+o'.d )A,(oc) COS!4

Since the coefficient of cosi can be shown to be positive,

in this case, E is stable about 1800 rather than about 00

as was the case for Enceladus and Dione.
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7. In this section, we shall treat the syutem of Mimas

and Tethys. For this system, the commensurability relation

involves the node instead of the perisaturnium. The con-

junction of the two satellites oscillates about the midpoint

between their two ascending nodes on Saturn's equator.

As an approximation to this system, we shall neglect

e and e' and set imi' =1 (primes refer to Tethys).

The commensurability relation states that I -4W -2A-JA'-A

oscillates about 0*. The terms in the disturbing functions

with this argument can be shown to have the following formas

Rjj=x-ief B*(L) cosj
4al

Rt=-iLG2 Ba€c) cosi
4al

where B$(*) is a Laplace coefficient and is positive for

this satellite system.

Neglecting the sinIjg term, as in section 3, we get
dt

I"-sinI where I=A3i'B 3 (o) [4 (m. n(!)(,

For the system of Mimas and Tethys, a small angle

approximation cannot be used since I oscillates about 00

with an amplitude of 95.30. In this case, our pendulum

equation must be solved in terms of elliptic integrals.

The tidal forces produce a phase shift in • but again we

can show that it is too small to be observed.
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8. The came of Io, Europa and Ganymede was first dis-

cussed by Laplace and since then has been treated by many

authors. 6 In this system, the commensurability relation

only involves the mean motions of these three bodies.

(They will be denoted by n,, n, and n3). A'1 -3A.-2A 3

oscillates about 1800 with a very small amplitude. The

proof of the stability of this relation, under tidal for-

ces, involves second order perturbation theoryt otherwise,

it goes through in exactly the same manner as the stabili-

ty proofs in the two body cases. The stability for this

case was known to Laplace. In this case also, the phase

shift in I is too small to be observed.

In the past, many authors have placed a lower limits

on the Q of Jupiter. This was accomplished by noting that

observations of lo (Jupiter I) gave no secular acceleration,

to within the observational accuracy. Lower bounds for 0

as high as 10 4 have been set by this method. It is in-

teresting to see how the tidal stability of the commensu-

rability relation changes the estimates of this lower bound.

The amount of angular momentum which the tides transfer

from the spin of Jupiter into orbital angular momentum of

the satellites is unaffected by the commensurability. How-

ever, in order to maintain the relation nj-3nc-2n3=O, this

angular momentum must be shared among Jupiter's satellites

in a special way. Three possibilities will be considered.
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It is well-known, that in addition to the three-body

commensurability just discussed, Jupiter's Galilean satel-

lites have the following near two body commensurabilitiess

2n 1 -n,=0, 2ns-rTO and 7nq-3n3=0. 8 These may or may not be

stable. (See section 9). If we assume the stability of

the first two two-body commensurabilities and the three-

body one, then the lower bound of Q must be decreased by

a factor of 5. If we assume all the above commensurabili-

ties are stable, then we must decrease this bound by a

factor of 7.4. If only the three-body commensurability is

stable, we again get a reduction factor of about 5.

9. The next topic to be discussed will be the evolution

of these stable commensurability relations.

Except for the three-body case of Io, Europa and Gany-

mede, the commensurability relations we have considered have

involved the pericenters and nodes of the satellites. From

the stability equation (3-10) for Enceladus and Dione, we

see that if e is below a certain value, then the commensura-

bility relation is broken down by the tides. For Titan and

Hyperion, a similar result holds for Hyperion's eccentricity,

sf. The stability of the Mimas-Tethys commensurability would

be destroyed If I became too small.

The inner satellites of planets tend to have small
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eccentricities and inclinations. Since terms in the disturbing

functions with argument AA 2 -A2A1 -(A, -AI)VI, have at least

A,-A 2 powers of a, in their coefficients, and those of

argument 2(AA 2 -A2 A, -(A#-Al)j-) have at least 2(A,-A 2 )

powers of i, in their coefficients, we see that it is not

surprising that the commensurate relations we observe have

AI=A+÷l. In this connection, we should note that, in general,

these arguments can involve both pericenters and nodes, and

that the only requirement on these arguments is that of ro-

tational invariance, mentioned in equation (3-3).

Now that we understand why only commensurabilities of

the form A. =A÷+k, where k is a small integer, are stable

under tidal forces, we can speculate about the past behavior

of satellite systems. Appealing to the results of the pre-

vious paper we also know that the eccentricities of many

satellites might have been considerably larger in the past

than they are at present. A similar result has been proved

for inclinations by Darwin. 9 This suggests that in the

past, stable near-commensurabilities might have been much

more common than at present, and of considerably greater

variety (i.e., larger differences Ag-A2 were possible). Of

these commensurabilities, all except those which involved

the fewest powers of eccentricity and inclination would

then have been disrupted by the tides. This would have

occurred as the eccentricities and inclinations of these

orbits decreased, also due to tidal action. Remnants of
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these higher order commensurabilities may account for some

of the near-commensurabilities which we now observe, but for

which no stability relation, such as those discussed, exists.

Finally, there is still another way in which secular

changes in eccentricity and inclination can be produced.

This will be illustrated for the case of Enceladus and Dione.

Referring to equations (3-1), (3-4), (3-11) and (3-13),

we have, for the rate of change of Enceladuse eccentricity

due to the term in the disturbing function with argument Is

de••a C(oK)sin
adt Ta

Since X is negative, in this case we see that the eccentri-

city of Enceladus is being decreased by the action of Dione.

This will eventually weaken the stability of the commensu-

rability relation between Enceladus and Dione to a point

where the tidal torque will disrupt it. Possibilities of

this kind make it impossible to consider very seriously, the

exact present values of the eccentricities of satellites in

the context of the previous paper alone. It is also possible,

that a past commensurability between Phobos and Deimos could

account for the low value of eccentricity for Deimos, as

discussed in the previous paper.

Before we end this discussion, it should be mentioned

that there is a limit beyond which these processes may not

decrease the eccentricity of an orbit. That limit is given

by the eccentricity which would be forced on the orbit by
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direct gravitational interactions with other satellites and

the sun.

10. In this section further areas for possible investi-

gation are discussed.

In the first place, the stable commensurability rela-

tions which were discussed in this paper referred only to

satellite systems and not to the planetary system. Tidal

effects on the planet's orbits are too small to have any

significance, even over ages comparable to that of the solar

system. However, the stability proof discussed in this paper,

would apply equally well to other phenQinena which might pro-

duce secular changes in the semi-major axis of the planets.

In particular, during the process of planet formation such

forces would undoubtedly nave existed in one form or another.

It is then possible, that the planets might also have been

involved in commensurability relations of the types dis-

cussed, and that their present distribution of mean motions

is at least partially a reflection of these relations.

Secondly, other stable commensural.ility relations may

exist. Possible candidates appear to be the two body' cases

of Io and Europa, Europa and Ganymede, and Ganymede and

Callisto. For the first two of these pairs, Griffinl 0 has

remarked that the inner of the pair is near perijove and the
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outer near apojove, whenever a conjunction takes place.

However, due to the large perturbations present in these

systems, a much more detailed stability proof is called for.

Finally, a possible three-body commensurability between

Titan, Rhea and Dione is suggest6d. If we denote the ele-

ments relevant to these satellites by subscripts 3, 2, and

1 respectively, then the following relations may be noted:

6nq-5n%2n 1 =000.081529 degrees per day

W,+2Ay-.0815±.00l degrees per day 12

Therefore, 6n 3 -5nr *2ni -li-2.A3=000.0000±.0009 degrees per day

We see that this relation holds to within the observational

accuracy of six significant figures. If this is a stable

commensurability relation, then a direct observation of

the tidal phase shift should be possible.
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